
S2T_Triple_Vision

Members:

Jacques Cloete – 44214987
Jean-Luc Begue – 40779173
Danika le Roux – 41049764

S2T

Technical Documentation

Page 1 of 17

Contents
Front-End Architecture .. 2

ENTERING THE BACK-END:... 3

2. Database Schema:... 3

3. Improved Database Schema: .. 4

5. Migrations: .. 5

6. Models: ... 6

7. Seeders:... 7

8. Controllers: .. 8

ENTERING THE FRONTEND: .. 13

12. Routes: .. 13

Web.php ... 13

Api.php ... 14

 .. 15

17. Conclusion: .. 17

Page 2 of 17

1. Why Did We Select Vue.js & Laravel?

Back-End Architecture

Our Laravel + Vue.js + Vuetify web application's backend architecture uses the Model-View-Controller (MVC) pattern,

which divides the application functionality into three interdependent parts. The foundation for developing the API,

responding to queries, handling data management using Eloquent ORM, and putting business logic into practice is

provided by Laravel. Incoming requests are handled by the controllers, which also communicate with models to

manipulate data and provide JSON responses to the frontend. In order to handle routes and middleware for

authentication, authorization, and error management efficiently, this structure encourages clean code organization and

maintainability. Additionally, by adhering to RESTful API principles, the backend is guaranteed to be scalable and able to

support numerous client applications.

Front-End Architecture
The frontend architecture makes use of Vuetify and Vue.js, two progressive JavaScript frameworks, to produce a vibrant,

responsive user interface. Because of the component-based design employed by this architecture, it is possible to create

reusable user interface components that contain their own logic and state. To improve the Single Page Application (SPA)

experience, Vue Router is used to manage navigation between several views. Vuex handles state management, allowing

you centralized control over the state of the application and easing data sharing between components. The frontend

and Laravel backend communicate effortlessly thanks to the integration of Axios for API queries, which guarantees

effective data processing and fetching. The dynamic, user-friendly interface that this design produces improves

application speed and user engagement.

Page 3 of 17

ENTERING THE BACK-END:

2. Database Schema:

We reviewed the S2TTech&FuncSpec - 323 v1.1 document and subsequently created a database schema that outlines

the structure and relationships of our database entities. This schema serves as a blueprint for the database design.

• https://tinyurl.com/5xedj45e

https://tinyurl.com/5xedj45e

Page 4 of 17

3. Improved Database Schema:

https://tinyurl.com/bdesymed
4. MySQL ERD

https://tinyurl.com/bdesymed

Page 5 of 17

5. Migrations:

Migrations are a way to version control database changes in Laravel. They allow developers to define the database

structure in PHP code, which can be easily shared and deployed. Migrations ensure that the database schema is in sync

across different environments and allow for easy modifications and rollbacks.

In the above screenshot we can see that this Laravel migration script creates a user’s table with fields for storing user

details such as name, surname, email (which is unique), and password. The email_verified_at field tracks email

verification, and rememberToken supports "remember me" functionality for login sessions.

The migration also defines a foreign key role_id, which references the roles table, allowing each user to have an

associated role. If a role is deleted, the role_id is set to null. The softDeletes feature enables soft deletion of users,

keeping the data for potential restoration. Timestamps (created_at and updated_at) are automatically managed. The

down method reverses these changes by dropping the table.

Page 6 of 17

6. Models:

Models in Laravel represent the entities in our application and interact with the corresponding database tables. Each

model encapsulates the properties and behaviours of a particular entity, following the ActiveRecord pattern.

By utilizing models, we can easily manage data retrieval, insertion, and manipulation, abstracting complex SQL queries

into simple method calls.

The Document model in Laravel is used to define the structure and relationships of documents in your application. It

specifies attributes such as document_name, storage_path, user_id, moderator_id, and document_rating_average,

while using Laravel’s HasFactory and Notifiable traits. The model defines several key relationships, including:

• BelongsTo relationships with the User model (both as the creator of the document and as a moderator).

• HasOne relationship with Metadata, indicating a document has associated metadata.

• BelongsToMany relationships with the User model for actions like starring, rating, downloading, reporting, and

sharing documents, indicating many-to-many relationships through pivot tables.

• It also includes attributes casting for types such as integers, booleans, and floats. These relations make this

model central to how users interact with documents, allowing for features like user reviews, moderation, and

document sharing.

Using PhpStorm with Laravel, you gain features like auto-completion, error checking, and navigation, making it easier to

manage such models and their relationships effectively.

Page 7 of 17

7. Seeders:

Seeders are classes that enable us to populate our database with sample or initial data. They help in testing the

application and ensure that the database has the necessary data to function correctly. By defining seeder classes, we can

easily create and run data population scripts that enhance the development and testing processes.

This UsersTableSeeder in Laravel is responsible for populating the users table with predefined data. It inserts three

users, each with attributes such as name, surname, email, hashed passwords (using Hash::make), and associated roles

(role_id). Timestamps for created_at and updated_at are set using Carbon, ensuring accurate date/time data. The

email_verified_at field marks the email as verified at the current time.

This seeder is typically used during development to quickly populate the database with sample users, aiding testing and

application setup.

Page 8 of 17

8. Controllers:

Controllers are responsible for handling incoming requests, processing user input, and returning appropriate responses.

In our application, controllers serve as intermediaries between the models and views, encapsulating the business logic.

Each controller is tailored to manage specific functionalities, making the application modular and organized.

This Laravel route and controller logic facilitates the population of a moderation page with documents, using Eloquent to

retrieve data from the database. The getDocumentsWithMetadata method fetches documents along with associated

user and metadata information, such as upload date, type, and size. It ensures proper handling of missing users,

displaying "Unknown" if the user is not found. The index method filters documents to display only those that have been

reviewed and returns the data to the front-end using Inertia.js. This setup allows efficient data management and real-

time interaction, with a focus on clean code architecture for document moderation. PhpStorm's deep Laravel integration

can help auto-generate routes, assist with code navigation, and debug potential issues effectively during the

development of this feature.

Page 9 of 17

9. Explanation of the Upload function and Processing Function that

validates, Converts and Watermarks documents uploaded.

This upload function is the pride and joy of the website as it handles document uploads with validation, file conversions,

watermarking, and storage. Here's a breakdown of each section:

1. Validation

• Validates the uploaded file and related metadata to ensure proper file types, document name, module code,

category, academic year, and lecturer information.

2. Duplicate Check

• Searches the database for existing documents with the same name, module code, and category to prevent

duplicate uploads.

3. File Upload Handling

• Extracts file details such as extension and size. Handles custom file paths for document storage.

Page 10 of 17

4. DOCX to PDF Conversion

• Converts .docx files to .pdf using PHPWord and DomPDF if necessary, ensuring uniformity in document handling.

5. Watermarking & PDF Merging

• If the file is a PDF (or converted to PDF), adds a cover page, merges the uploaded document, and applies a

watermark on each page.

6. File Storage

• Stores the final file (watermarked/converted) in a predefined folder structure. For non-PDF files, it bypasses

watermarking.

7. Database Insertion

• Uses a database transaction to store document and metadata information in two related tables: documents and

metadata.

8. Error Handling

• Catches exceptions during file processing and database insertion to provide meaningful error messages.

9. Success Response

• Returns a success message after the file has been validated, converted (if necessary), watermarked, and stored

successfully.

This structured approach ensures smooth document uploads, proper validation, and data integrity, all while preventing

duplicates and adding value with watermarks and file conversions.

Page 11 of 17

10. Middleware Configuration in Kernel.php for Web and API Routes

This Kernel.php file plays a crucial role in a Laravel application by managing middleware. Middleware is
responsible for filtering HTTP requests before they reach controllers and handling HTTP responses after they've
been processed. Here’s a breakdown of the code and its purpose:

• The Kernel.php file defines which middleware to apply to API and web routes.

• It ensures smooth handling of sessions, cookies, bindings, and error sharing across the app.

• Middleware like EnsureFrontendRequestsAreStateful and HandleInertiaRequests are vital for secure and

efficient communication between the frontend (Vue.js) and backend (Laravel), especially with stateful requests

for authentication.

Page 12 of 17

11. File Storage Structure in storage/app/public/documents

Purpose:

• This structure follows best practices for file organization, ensuring:

• Easy retrieval and navigation of files based on subject and document
type.

• Proper grouping of academic content for different courses.

• Logical and scalable file management, where new subjects or categories
can easily be added to the structure.

By keeping documents well-organized in the public directory, the Laravel app
can efficiently serve and manage user-uploaded files, while still adhering to

file access control policies defined in the app.

Page 13 of 17

ENTERING THE FRONTEND:

12. Routes:

We configured the application routing by defining routes in the routes/api.php and routes/web.php files. This routing

setup directs incoming requests to the appropriate controllers and methods, ensuring that the application responds

correctly to user interactions and API calls.

Web.php

The web.php file in a Laravel application defines the routes for handling HTTP requests and directs them to
specific controllers. Its primary purpose is to map URLs to their corresponding controller actions, facilitating
navigation and functionality within the web app. This includes serving pages, processing form submissions, and
managing user interactions, ensuring that the application responds appropriately to user requests.

Page 14 of 17

Api.php

The Laravel application's web.php file specifies routes for managing common web requests, with an emphasis on
page display and form submission management. Its primary functions include managing user-facing routes for
navigation and view rendering.

The routes meant for API calls are defined in the api.php file, which is frequently secured for authentication using
Laravel Sanctum. These stateless routes generally control data operations (CRUD), with an emphasis on
moderation features, document management, and user authentication. Instead of utilizing a browser to interact,
the client or other systems use the API routes in api.php programmatically.

Page 15 of 17

13. The RESTful approach:

14. API Testing with Postman:

Postman was utilized for API testing, allowing us to simulate various requests and validate the responses from our

application. This tool enables developers to efficiently test endpoints, ensuring that the API behaves as expected and

adheres to the defined specifications.

Page 16 of 17

15. API Documentation with Editor.Swagger.io:

We documented our API using Editor.Swagger.io, creating comprehensive and interactive API documentation. This

documentation serves as a reference for developers and stakeholders, outlining the available endpoints,

request/response structures, and authentication methods.

16. Using Axios for Asynchronous API Requests in Vue.js

Axios is a promise-based HTTP client used in Vue.js to make asynchronous requests to the server. In this example,
Axios is used for making GET and PATCH requests to fetch user data and update user roles, respectively. The
fetchUsersWithRoles method fetches a list of users from an API, while makeEducator and makeModerator send
updates to the server by modifying user roles via PATCH requests. Axios simplifies handling server responses and
errors, allowing the app to interact with APIs efficiently, updating data without page reloads.

Page 17 of 17

17. Conclusion:
Comprehensive documentation is crucial for the smooth progression and long-term success of any project. By

thoroughly documenting our use of Laravel and Vue.js, database schema, migrations, models, seeders, controllers,

routes, and APIs, we have set a solid foundation for efficient development and easy collaboration. This approach not

only enhances clarity but also ensures that our code remains maintainable, scalable, and easy to debug as we move

closer to the project's completion. Ultimately, well-structured documentation fosters teamwork and streamlines future

development efforts.

